Marching to advanced level, error and exception handling as well as logging is necessary. Logging is blogged and in the following are about error and exception handling.
For example
import pandas as pd
class Portfolio:
def __init__(self, price_data, currencies=['btc', 'eth']):
self.price_data = price_data # Initialize price data
self.currencies = currencies # Initialize list of currencies
# Ensure price_data is provided and not empty
if not isinstance(self.price_data, pd.DataFrame) or self.price_data.empty:
raise ValueError("price_data must be a non-empty DataFrame")
self.returns_data = self._calculate_returns() # Initialize returns data by calling _calculate_returns()
def _calculate_returns(self):
# Check if 'date' column exists in price_data
if 'date' not in self.price_data.columns:
raise ValueError("price_data must contain a 'date' column")
# Convert 'date' column to datetime and set it as index
self.price_data.index = pd.to_datetime(self.price_data['date'])
# Sort price_data by index (date)
self.price_data = self.price_data.sort_index()
# Resample to monthly data, calculate percentage change
monthly_data = self.price_data.drop('date', axis=1)[self.currencies].resample('M').last()
monthly_returns = monthly_data.pct_change()
return monthly_returns # Return monthly returns DataFrame
def rebalance_portfolio(self):
# Ensure returns_data is initialized
if not hasattr(self, 'returns_data') or self.returns_data.empty:
raise ValueError("returns_data is not initialized or empty. Call _calculate_returns() first.")
# Calculate portfolio return as mean of currency returns
self.returns_data['portfolio_return'] = self.returns_data[self.currencies].mean(axis=1)
# Calculate cumulative return
self.returns_data['cumulative_return'] = (1 + self.returns_data['portfolio_return']).cumprod()
return self.returns_data # Return updated returns data DataFrame
when execute
# Example usage with error handling
try:
portfolio = Portfolio(price_data=my_price_data)
portfolio.rebalance_portfolio()
except ValueError as e:
print(f"Error occurred: {str(e)}")