Error and Exception Handling

Marching to advanced level, error and exception handling as well as logging is necessary. Logging is blogged and in the following are about error and exception handling.

For example

import pandas as pd

class Portfolio:
    def __init__(self, price_data, currencies=['btc', 'eth']):
        self.price_data = price_data  # Initialize price data
        self.currencies = currencies  # Initialize list of currencies
        
        # Ensure price_data is provided and not empty
        if not isinstance(self.price_data, pd.DataFrame) or self.price_data.empty:
            raise ValueError("price_data must be a non-empty DataFrame")
        
        self.returns_data = self._calculate_returns()  # Initialize returns data by calling _calculate_returns()

    def _calculate_returns(self):
        # Check if 'date' column exists in price_data
        if 'date' not in self.price_data.columns:
            raise ValueError("price_data must contain a 'date' column")
        
        # Convert 'date' column to datetime and set it as index
        self.price_data.index = pd.to_datetime(self.price_data['date'])
        # Sort price_data by index (date)
        self.price_data = self.price_data.sort_index()

        # Resample to monthly data, calculate percentage change
        monthly_data = self.price_data.drop('date', axis=1)[self.currencies].resample('M').last()
        monthly_returns = monthly_data.pct_change()

        return monthly_returns  # Return monthly returns DataFrame

    def rebalance_portfolio(self):
        # Ensure returns_data is initialized
        if not hasattr(self, 'returns_data') or self.returns_data.empty:
            raise ValueError("returns_data is not initialized or empty. Call _calculate_returns() first.")
        
        # Calculate portfolio return as mean of currency returns
        self.returns_data['portfolio_return'] = self.returns_data[self.currencies].mean(axis=1)
        # Calculate cumulative return
        self.returns_data['cumulative_return'] = (1 + self.returns_data['portfolio_return']).cumprod()

        return self.returns_data  # Return updated returns data DataFrame

when execute

# Example usage with error handling
try:
    portfolio = Portfolio(price_data=my_price_data)
    portfolio.rebalance_portfolio()
except ValueError as e:
    print(f"Error occurred: {str(e)}")

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.