Here is the space hierarchy:
+----------------------+
| Metric Space |
+----------------------+
|
V
+----------------------+
| Normed Space |
+----------------------+
|
V
+----------------------+
| Banach Space |
+----------------------+
|
V
+----------------------+
| Inner Product Space |
+----------------------+
|
V
+----------------------+
| Hilbert Space |
+----------------------+
|
|
| +------------------------+
| | Sobolev Spaces |
| +------------------------+
| |
V V
+----------------------+ +------------------------+
| Euclidean Space | | $L^p$ Spaces |
+----------------------+ +------------------------+
|
V
+------------------------+
| Lebesgue Spaces |
+------------------------+
Additional branches:
Topological Space
|
V
+—————–+
| Locally Compact |
| Hausdorff Space |
+—————–+
|
V
+—————–+
| Topological |
| Vector Space |
+—————–+
|
V
+——————-+
| Banach Manifold |
+——————-+
+------------------+
| Algebraic Structure |
+------------------+
|
V
+--------------------+
| Ring |
+--------------------+
|
|
+-------------------+
| |
V V
+-----------------+ +------------------------+
| Commutative | | Non-Commutative Ring |
| Ring | | |
+-----------------+ +------------------------+
|
V
+--------------------+
| Integral Domain |
+--------------------+
|
V
+--------------------+
| Field |
+--------------------+
|
|
+-----------------------------------+
| Subfield / Extension Field |
+-----------------------------------+
Additional Structure for Modules:
+------------------+
| Module |
+------------------+
|
V
+-------------------+
| Vector Space | (Module over a field)
+-------------------+
- Algebraic Structure: The broadest category encapsulating rings, fields, and modules.
- Ring: Fundamental algebraic structure supporting addition and multiplication.
- Commutative Ring: Special type where multiplication is commutative.
- Integral Domain: Commutative ring without zero divisors.
- Field: Commutative ring with multiplicative inverses for all non-zero elements.
- Subfield/Extension Field: More specific or extended structures within fields.
- Field: Commutative ring with multiplicative inverses for all non-zero elements.
- Integral Domain: Commutative ring without zero divisors.
- Non-Commutative Ring: Rings without commutative multiplication.
- Commutative Ring: Special type where multiplication is commutative.
- Module: Generalization of vector spaces where scalars form a ring.
- Vector Space: Special case of a module where scalars form a field.
Additional notes on conjugacy classes (not groups) and cosets and normal subgroup, using S3 as example to explain: Conjugacy classes group elements that are similar in the structure.Cosets are the group split into parts based on a subgroup.A normal subgroup is a special subgroup where the structure is preserved even when elements are conjugated.


