In this post, I will convert this calculate_sector_neutral_tilted_weights function into C++ which is more verbose but robust.
first the header file
#pragma once
#include <string>
#include <vector>
#include <map>
#include <DataFrame/DataFrame.h> // Using a DataFrame library
struct SectorData {
std::string sector;
std::vector<double> weights;
std::vector<double> act_pass;
// Other necessary fields
};
class SectorNeutralTilting {
public:
static DataFrame calculateSectorNeutralTiltedWeights(const DataFrame& df);
private:
static double sigmoid(double x);
static std::vector<double> calculateZScores(const std::vector<double>& values);
static std::vector<double> clipValues(const std::vector<double>& values, double min, double max);
};
Next the source cpp file:
#include "sector_neutral.h"
#include <cmath>
#include <numeric>
#include <algorithm>
double SectorNeutralTilting::sigmoid(double x) {
return 1.0 / (1.0 + std::exp(-x));
}
std::vector<double> SectorNeutralTilting::calculateZScores(const std::vector<double>& values) {
// Calculate mean
double sum = std::accumulate(values.begin(), values.end(), 0.0);
double mean = sum / values.size();
// Calculate standard deviation
double sq_sum = std::inner_product(values.begin(), values.end(), values.begin(), 0.0);
double stdev = std::sqrt(sq_sum / values.size() - mean * mean);
// Calculate z-scores
std::vector<double> z_scores;
z_scores.reserve(values.size());
for (double value : values) {
z_scores.push_back((value - mean) / stdev);
}
return z_scores;
}
std::vector<double> SectorNeutralTilting::clipValues(const std::vector<double>& values,
double min, double max) {
std::vector<double> clipped;
clipped.reserve(values.size());
for (double value : values) {
clipped.push_back(std::clamp(value, min, max));
}
return clipped;
}
DataFrame SectorNeutralTilting::calculateSectorNeutralTiltedWeights(const DataFrame& df) {
// Group data by sector
std::map<std::string, SectorData> sector_groups;
// Assuming df has methods to access columns and iterate rows
for (size_t i = 0; i < df.rows(); ++i) {
std::string sector = df.get<std::string>("Sector", i);
double weight = df.get<double>("Weight", i);
double act_pass = df.get<double>("act_pass", i);
sector_groups[sector].weights.push_back(weight);
sector_groups[sector].act_pass.push_back(act_pass);
}
DataFrame result;
std::map<std::string, double> sector_weights;
double total_weight = 0.0;
// Process each sector
for (auto& [sector, data] : sector_groups) {
// Calculate Z-scores within sector
auto z_scores = calculateZScores(data.act_pass);
// Cap Z-scores
auto capped_z_scores = clipValues(z_scores, -3.0, 3.0);
// Apply sigmoid
const double sigmoid_scale = 10.0;
std::vector<double> tilting_factors;
tilting_factors.reserve(capped_z_scores.size());
for (double z : capped_z_scores) {
tilting_factors.push_back(sigmoid(sigmoid_scale * z));
}
// Calculate sector market weights
double sector_total = std::accumulate(data.weights.begin(),
data.weights.end(), 0.0);
std::vector<double> sector_mkt_weights;
std::vector<double> sector_tilted_weights;
for (size_t i = 0; i < data.weights.size(); ++i) {
double mkt_weight = data.weights[i] / sector_total;
sector_mkt_weights.push_back(mkt_weight);
sector_tilted_weights.push_back(mkt_weight * (1.0 + tilting_factors[i]));
}
// Normalize sector tilted weights
double tilted_sum = std::accumulate(sector_tilted_weights.begin(),
sector_tilted_weights.end(), 0.0);
for (double& weight : sector_tilted_weights) {
weight /= tilted_sum;
}
// Store sector weight for final adjustment
sector_weights[sector] = sector_total;
total_weight += sector_total;
// Add to result DataFrame
// ... (implementation depends on DataFrame library used)
}
// Normalize sector weights
for (auto& [sector, weight] : sector_weights) {
weight /= total_weight;
}
// Apply sector neutrality and final normalization
// ... (implementation depends on DataFrame library used)
return result;
}