Reporting and Analytics:
- Client reporting
- Risk reports
- Performance attribution reports
- Portfolio characteristics
- What-if analysis tools
- Real-time dashboards
Hence, Main ReportingAnalytics Class, Acts as the main interface for all reporting and analytics functionality, Integrates all other components into a single, cohesive system
Component Classes: ClientReporting: Handles generation and export of client reports
RiskAnalytics: Implements risk metrics including VaR and tracking error calculations
PerformanceAttribution: Manages performance attribution analysis and factor contribution
PortfolioCharacteristics: Calculates and compares portfolio metrics
WhatIfAnalysis: Enables scenario analysis and impact assessment
RealTimeDashboard: Provides real-time monitoring and metrics updates
here is the reporting_analytics.py
"""
Reporting and Analytics Module for Index Solutions
This module provides comprehensive reporting and analytics capabilities including:
- Client reporting
- Risk reports
- Performance attribution
- Portfolio characteristics
- What-if analysis
- Real-time dashboards
"""
import pandas as pd
import numpy as np
from datetime import datetime
from typing import Dict, List, Optional, Union
from risk_analytics import RiskAnalytics as BaseRiskAnalytics, MarketData, LiquidityMetrics
class ClientReporting:
def __init__(self):
self.report_data = {}
def generate_client_report(self, portfolio_id: str, start_date: datetime, end_date: datetime) -> Dict:
"""Generate comprehensive client report"""
# Placeholder for client report generation logic
return {
"portfolio_id": portfolio_id,
"period": f"{start_date} to {end_date}",
"summary": {},
"details": {}
}
def export_report(self, format: str = "pdf"):
"""Export report in specified format"""
pass
class RiskAnalytics(BaseRiskAnalytics):
"""Extended RiskAnalytics class that adds reporting capabilities"""
def __init__(self, returns: pd.DataFrame, factor_returns: pd.DataFrame = None, benchmark_returns: pd.Series = None):
super().__init__(returns, factor_returns, benchmark_returns)
self.risk_reports = {}
def generate_risk_report(self, portfolio_weights: Dict[str, float], positions: Dict[str, float]) -> Dict:
"""Generate comprehensive risk report"""
report = {
"timestamp": datetime.now(),
"var": self.calculate_var(portfolio_weights),
"cvar": self.calculate_cvar(portfolio_weights),
"tracking_error": self.calculate_tracking_error(portfolio_weights),
"liquidity_metrics": self.calculate_portfolio_liquidity(positions),
"correlation_regimes": self.detect_correlation_regimes()
}
self.risk_reports[str(datetime.now())] = report
return report
def get_historical_risk_metrics(self, start_date: datetime = None, end_date: datetime = None) -> Dict:
"""Retrieve historical risk metrics"""
filtered_reports = {
timestamp: report
for timestamp, report in self.risk_reports.items()
if (not start_date or timestamp >= str(start_date)) and
(not end_date or timestamp <= str(end_date))
}
return filtered_reports
class PerformanceAttribution:
def __init__(self):
self.attribution_data = {}
def calculate_attribution(self, portfolio_data: pd.DataFrame, benchmark_data: pd.DataFrame) -> Dict:
"""Calculate performance attribution"""
return {
"allocation_effect": {},
"selection_effect": {},
"interaction_effect": {},
"total_effect": {}
}
def analyze_factor_contribution(self, factors: List[str]) -> Dict:
"""Analyze contribution from different factors"""
pass
class PortfolioCharacteristics:
def __init__(self):
self.characteristics = {}
def calculate_metrics(self, portfolio_data: pd.DataFrame) -> Dict:
"""Calculate portfolio characteristics"""
return {
"market_cap": None,
"pe_ratio": None,
"dividend_yield": None,
"sector_weights": {},
"country_weights": {}
}
def compare_to_benchmark(self, benchmark_data: pd.DataFrame) -> Dict:
"""Compare portfolio characteristics to benchmark"""
pass
class WhatIfAnalysis:
def __init__(self):
self.scenarios = {}
def create_scenario(self, scenario_name: str, changes: Dict) -> None:
"""Create a new what-if scenario"""
self.scenarios[scenario_name] = changes
def analyze_scenario(self, scenario_name: str, portfolio_data: pd.DataFrame) -> Dict:
"""Analyze impact of a scenario"""
pass
class RealTimeDashboard:
def __init__(self):
self.dashboard_data = {}
self.update_frequency = 60 # seconds
def update_dashboard(self) -> None:
"""Update dashboard with real-time data"""
pass
def get_dashboard_metrics(self) -> Dict:
"""Get current dashboard metrics"""
return {
"portfolio_value": None,
"daily_return": None,
"risk_metrics": {},
"alerts": []
}
class ReportingAnalytics:
def __init__(self, returns: pd.DataFrame = None, factor_returns: pd.DataFrame = None, benchmark_returns: pd.Series = None):
self.returns = returns
self.factor_returns = factor_returns
self.benchmark_returns = benchmark_returns
self.client_reporting = ClientReporting()
self.risk_analytics = RiskAnalytics(returns, factor_returns, benchmark_returns) if returns is not None else None
self.performance_attribution = PerformanceAttribution()
self.portfolio_characteristics = PortfolioCharacteristics()
self.what_if_analysis = WhatIfAnalysis()
self.dashboard = RealTimeDashboard()
def initialize_risk_analytics(self, returns: pd.DataFrame,
factor_returns: pd.DataFrame = None,
benchmark_returns: pd.Series = None) -> None:
"""Initialize or update risk analytics with new data"""
self.returns = returns
self.factor_returns = factor_returns
self.benchmark_returns = benchmark_returns
self.risk_analytics = RiskAnalytics(returns, factor_returns, benchmark_returns)
def generate_comprehensive_report(self, portfolio_id: str,
start_date: datetime,
end_date: datetime,
include_sections: List[str] = None) -> Dict:
"""
Generate a comprehensive report including all or specified analytics sections
Args:
portfolio_id: Unique identifier for the portfolio
start_date: Start date for the analysis period
end_date: End date for the analysis period
include_sections: List of sections to include (None for all)
Returns:
Dictionary containing all requested analytics and reports
"""
report = {
"timestamp": datetime.now(),
"portfolio_id": portfolio_id,
"period": {
"start": start_date,
"end": end_date
}
}
# Add requested or all sections
if not include_sections or "client_report" in include_sections:
report["client_report"] = self.client_reporting.generate_client_report(
portfolio_id, start_date, end_date
)
# Add other sections as needed
return report