Comprehensive Quant Workflow 5 Trading and Execution

Trading and Execution:

  1. Trading Cost Estimation
    • Implementation shortfall calculation
    • Market impact modeling using square root model
    • Timing cost estimation
  2. Optimal Execution Strategy
    • Almgren-Chriss optimal execution model
    • Time-weighted average price (TWAP) implementation
    • Volume-weighted average price (VWAP) considerations
  3. Dark Pool Integration
    • Smart order routing across venues
    • Historical fill rate analysis
    • Price improvement optimization
  4. Position Unwinding
    • Risk-aware liquidation scheduling
    • Market impact minimization
    • Multi-day trade planning
  5. Market Impact Modeling
    • Square root impact model
    • Volatility-adjusted impact calculation
    • Temporary and permanent impact consideration

    trading_execution.py:

    """
    Trading and Execution Module for Index Solutions
    This module provides comprehensive trading and execution capabilities including:
    - Trading cost estimation
    - Market impact modeling
    - Optimal execution strategies
    - Dark pool/algorithmic trading integration
    - Multi-day trade scheduling
    - Position unwinding strategies
    """
    
    import numpy as np
    import pandas as pd
    from datetime import datetime, timedelta
    from typing import Dict, List, Optional, Union, Tuple
    from dataclasses import dataclass
    from enum import Enum
    from risk_analytics import MarketData, RiskAnalytics
    
    class VenueType(Enum):
        LIT_EXCHANGE = "lit_exchange"
        DARK_POOL = "dark_pool"
        ALGO_ENGINE = "algo_engine"
        BLOCK_VENUE = "block_venue"
    
    @dataclass
    class TradingVenue:
        venue_type: VenueType
        name: str
        fee_structure: Dict[str, float]
        historical_fill_rate: float
        average_price_improvement: float
        typical_latency: float  # milliseconds
    
    @dataclass
    class TradeInstruction:
        symbol: str
        side: str  # 'BUY' or 'SELL'
        quantity: int
        price_limit: Optional[float]
        urgency: float  # 0 to 1, where 1 is most urgent
        valid_venues: List[VenueType]
        start_time: datetime
        end_time: datetime
    
    class TradingCostEstimator:
        def __init__(self, market_data: Dict[str, MarketData]):
            self.market_data = market_data
            
        def estimate_implementation_shortfall(self, trade: TradeInstruction) -> float:
            """Estimate implementation shortfall for a trade"""
            market_data = self.market_data[trade.symbol]
            
            # Basic implementation shortfall model
            spread_cost = market_data.bid_ask_spread / 2
            market_impact = self._calculate_market_impact(trade, market_data)
            timing_cost = self._estimate_timing_cost(trade, market_data)
            
            return spread_cost + market_impact + timing_cost
        
        def _calculate_market_impact(self, trade: TradeInstruction, market_data: MarketData) -> float:
            """Calculate market impact using square root model"""
            daily_volume = market_data.avg_daily_volume
            participation_rate = trade.quantity / daily_volume
            
            # Square root impact model
            impact = market_data.volatility * np.sqrt(participation_rate)
            return impact * market_data.price
        
        def _estimate_timing_cost(self, trade: TradeInstruction, market_data: MarketData) -> float:
            """Estimate timing cost based on urgency and volatility"""
            duration = (trade.end_time - trade.start_time).total_seconds() / (60 * 60 * 24)  # in days
            return market_data.volatility * np.sqrt(duration) * trade.urgency
    
    class OptimalExecutionStrategy:
        def __init__(self, risk_analytics: RiskAnalytics, cost_estimator: TradingCostEstimator):
            self.risk_analytics = risk_analytics
            self.cost_estimator = cost_estimator
            
        def generate_trading_schedule(self, trade: TradeInstruction) -> List[Dict]:
            """Generate optimal trading schedule"""
            total_duration = (trade.end_time - trade.start_time).total_seconds()
            num_intervals = int(total_duration / 300)  # 5-minute intervals
            
            # Almgren-Chriss optimal execution model
            remaining_time = np.linspace(0, total_duration, num_intervals)
            volatility = self.market_data[trade.symbol].volatility
            market_impact_factor = self._calculate_market_impact_factor(trade)
            
            # Calculate optimal trajectory
            optimal_shares = self._calculate_optimal_trajectory(
                trade.quantity, remaining_time, volatility, market_impact_factor
            )
            
            return self._create_execution_schedule(trade, optimal_shares)
        
        def _calculate_optimal_trajectory(self, total_shares: int, 
                                       remaining_time: np.ndarray,
                                       volatility: float,
                                       market_impact_factor: float) -> np.ndarray:
            """Implement Almgren-Chriss optimal execution model"""
            tau = remaining_time[-1] - remaining_time
            kappa = np.sqrt(market_impact_factor / volatility)
            
            # Optimal trading trajectory
            trajectory = np.sinh(kappa * tau) / np.sinh(kappa * remaining_time[-1])
            shares = total_shares * trajectory
            
            return shares
    
    class DarkPoolIntegration:
        def __init__(self, venues: List[TradingVenue]):
            self.venues = venues
            self.venue_stats = {}
            
        def optimize_dark_pool_routing(self, trade: TradeInstruction) -> Dict[str, float]:
            """Optimize order routing across dark pools"""
            dark_pools = [v for v in self.venues if v.venue_type == VenueType.DARK_POOL]
            
            # Calculate routing weights based on historical performance
            weights = self._calculate_venue_weights(dark_pools, trade)
            return {pool.name: weight for pool, weight in zip(dark_pools, weights)}
        
        def _calculate_venue_weights(self, venues: List[TradingVenue], 
                                   trade: TradeInstruction) -> np.ndarray:
            """Calculate optimal venue weights based on historical performance"""
            fill_rates = np.array([v.historical_fill_rate for v in venues])
            price_improvement = np.array([v.average_price_improvement for v in venues])
            
            # Combine metrics with custom weights
            score = 0.7 * fill_rates + 0.3 * price_improvement
            weights = score / np.sum(score)
            
            return weights
    
    class PositionUnwinding:
        def __init__(self, risk_analytics: RiskAnalytics, cost_estimator: TradingCostEstimator):
            self.risk_analytics = risk_analytics
            self.cost_estimator = cost_estimator
        
        def generate_unwinding_strategy(self, positions: Dict[str, int],
                                      max_days: int,
                                      risk_limit: float) -> Dict[str, List[Dict]]:
            """Generate position unwinding strategy"""
            # Calculate position risks and liquidation costs
            position_risks = self._calculate_position_risks(positions)
            liquidation_costs = self._estimate_liquidation_costs(positions)
            
            # Sort positions by risk-adjusted liquidation cost
            risk_cost_ratio = {
                symbol: position_risks[symbol] / liquidation_costs[symbol]
                for symbol in positions
            }
            
            sorted_positions = sorted(
                positions.items(),
                key=lambda x: risk_cost_ratio[x[0]],
                reverse=True
            )
            
            return self._create_unwinding_schedule(sorted_positions, max_days, risk_limit)
        
        def _create_unwinding_schedule(self, sorted_positions: List[Tuple],
                                     max_days: int,
                                     risk_limit: float) -> Dict[str, List[Dict]]:
            """Create detailed unwinding schedule"""
            schedule = {}
            current_date = datetime.now()
            
            for symbol, quantity in sorted_positions:
                daily_volume = self.market_data[symbol].avg_daily_volume
                max_participation = 0.2  # 20% participation rate limit
                
                # Calculate daily quantities
                daily_qty = min(quantity, int(daily_volume * max_participation))
                num_days = min(max_days, int(np.ceil(quantity / daily_qty)))
                
                schedule[symbol] = []
                remaining_qty = quantity
                
                for day in range(num_days):
                    trade_qty = min(daily_qty, remaining_qty)
                    schedule[symbol].append({
                        'date': current_date + timedelta(days=day),
                        'quantity': trade_qty,
                        'expected_impact': self.cost_estimator._calculate_market_impact(
                            TradeInstruction(
                                symbol=symbol,
                                side='SELL',
                                quantity=trade_qty,
                                price_limit=None,
                                urgency=0.5,
                                valid_venues=[VenueType.LIT_EXCHANGE, VenueType.DARK_POOL],
                                start_time=datetime.now(),
                                end_time=datetime.now() + timedelta(days=1)
                            ),
                            self.market_data[symbol]
                        )
                    })
                    remaining_qty -= trade_qty
            
            return schedule
    
    class TradingExecution:
        def __init__(self, risk_analytics: RiskAnalytics):
            self.risk_analytics = risk_analytics
            self.market_data = {}
            self.venues: List[TradingVenue] = []
            
            # Initialize components
            self.cost_estimator = TradingCostEstimator(self.market_data)
            self.execution_strategy = OptimalExecutionStrategy(risk_analytics, self.cost_estimator)
            self.dark_pool_integration = DarkPoolIntegration(self.venues)
            self.position_unwinding = PositionUnwinding(risk_analytics, self.cost_estimator)
        
        def add_venue(self, venue: TradingVenue):
            """Add a trading venue"""
            self.venues.append(venue)
        
        def update_market_data(self, symbol: str, market_data: MarketData):
            """Update market data for a symbol"""
            self.market_data[symbol] = market_data
        
        def execute_trade(self, trade: TradeInstruction) -> Dict:
            """Execute a trade using optimal execution strategy"""
            # Generate trading schedule
            schedule = self.execution_strategy.generate_trading_schedule(trade)
            
            # If dark pools are valid venues, optimize dark pool routing
            if VenueType.DARK_POOL in trade.valid_venues:
                dark_pool_allocation = self.dark_pool_integration.optimize_dark_pool_routing(trade)
                schedule = self._incorporate_dark_pool_routing(schedule, dark_pool_allocation)
            
            # Estimate trading costs
            estimated_costs = self.cost_estimator.estimate_implementation_shortfall(trade)
            
            return {
                'schedule': schedule,
                'estimated_costs': estimated_costs,
                'dark_pool_allocation': dark_pool_allocation if VenueType.DARK_POOL in trade.valid_venues else None
            }
        
        def unwind_positions(self, positions: Dict[str, int],
                            max_days: int = 5,
                            risk_limit: float = 0.02) -> Dict[str, List[Dict]]:
            """Generate unwinding strategy for positions"""
            return self.position_unwinding.generate_unwinding_strategy(
                positions, max_days, risk_limit
            )

    Leave a comment

    This site uses Akismet to reduce spam. Learn how your comment data is processed.