Comprehensive Quant Workflow 6 Backtest and Research

 A comprehensive research infrastructure with:

  1. Backtesting Framework
    • Event-driven architecture
    • Transaction cost modeling
    • Performance analytics
    • Risk management integration
  2. Factor Research Platform
    • Factor return calculation
    • Statistical significance testing
    • Cross-sectional analysis
    • Factor decay modeling
  3. Signal Generation
    • Technical indicators
    • Factor-based signals
    • Machine learning integration
    • Signal combination methods
  4. Machine Learning Integration
    • Time series cross-validation
    • Feature engineering
    • Model selection and validation
    • Ensemble methods
  5. Alternative Data Processing
    • Flexible data source integration
    • Custom processing pipelines
    • Data quality checks
  6. Market Regime Detection
    • Hidden Markov Models
    • Regime characteristics analysis
    • Regime-aware strategy adjustment
"""
Backtesting and Research Infrastructure Module for Index Solutions
This module provides comprehensive research capabilities including:
- Backtesting framework
- Factor research and analysis
- Signal generation and testing
- Machine learning model integration
- Alternative data processing
- Market regime detection
"""

import numpy as np
import pandas as pd
from typing import Dict, List, Optional, Union, Callable, Tuple
from dataclasses import dataclass
from datetime import datetime, timedelta
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import TimeSeriesSplit
from scipy.stats import norm
import statsmodels.api as sm
from risk_analytics import RiskAnalytics
from trading_execution import TradingExecution, TradeInstruction

@dataclass
class BacktestConfig:
    start_date: datetime
    end_date: datetime
    initial_capital: float
    transaction_costs: Dict[str, float]  # Different types of costs
    rebalance_frequency: str  # 'daily', 'weekly', 'monthly'
    risk_limits: Dict[str, float]
    benchmark: str

@dataclass
class SignalConfig:
    lookback_period: int
    decay_factor: float
    update_frequency: str
    combination_method: str  # 'equal_weight', 'risk_parity', 'optimization'

class MarketRegime:
    def __init__(self, returns: pd.DataFrame, window_size: int = 252):
        self.returns = returns
        self.window_size = window_size
        self.regimes = pd.Series(index=returns.index)
        self.regime_stats = {}
        
    def detect_regimes(self, n_regimes: int = 3) -> pd.Series:
        """Detect market regimes using Hidden Markov Model"""
        from hmmlearn import hmm
        
        # Calculate features for regime detection
        rolling_vol = self.returns.rolling(window=21).std() * np.sqrt(252)
        rolling_corr = self.returns.rolling(window=63).corr().mean()
        
        # Combine features
        features = np.column_stack([rolling_vol, rolling_corr])
        
        # Fit HMM
        model = hmm.GaussianHMM(n_components=n_regimes, covariance_type="full")
        self.regimes = pd.Series(
            model.fit_predict(features),
            index=self.returns.index
        )
        
        # Calculate regime characteristics
        for regime in range(n_regimes):
            mask = self.regimes == regime
            self.regime_stats[regime] = {
                'volatility': self.returns[mask].std() * np.sqrt(252),
                'sharpe': self.returns[mask].mean() / self.returns[mask].std() * np.sqrt(252),
                'frequency': mask.mean()
            }
        
        return self.regimes

class FactorResearch:
    def __init__(self, price_data: pd.DataFrame, factor_data: pd.DataFrame):
        self.price_data = price_data
        self.factor_data = factor_data
        self.factor_returns = pd.DataFrame()
        self.factor_exposures = pd.DataFrame()
    
    def calculate_factor_returns(self, method: str = 'regression') -> pd.DataFrame:
        """Calculate factor returns using specified method"""
        if method == 'regression':
            # Fama-MacBeth regression
            self.factor_returns = self._fama_macbeth_regression()
        elif method == 'portfolio_sort':
            # Portfolio sort method
            self.factor_returns = self._portfolio_sort()
        
        return self.factor_returns
    
    def analyze_factor_significance(self) -> pd.DataFrame:
        """Analyze statistical significance of factors"""
        factor_stats = pd.DataFrame()
        
        for factor in self.factor_returns.columns:
            returns = self.factor_returns[factor]
            t_stat = returns.mean() / (returns.std() / np.sqrt(len(returns)))
            factor_stats.loc[factor, 'T-Statistic'] = t_stat
            factor_stats.loc[factor, 'P-Value'] = 2 * (1 - norm.cdf(abs(t_stat)))
            factor_stats.loc[factor, 'Sharpe'] = returns.mean() / returns.std() * np.sqrt(252)
            factor_stats.loc[factor, 'IR'] = self._calculate_information_ratio(returns)
        
        return factor_stats
    
    def _fama_macbeth_regression(self) -> pd.DataFrame:
        """Implement Fama-MacBeth regression"""
        factor_returns = pd.DataFrame(index=self.price_data.index)
        
        for date in self.price_data.index:
            # Cross-sectional regression
            y = self.price_data.loc[date]
            X = self.factor_data.loc[date]
            model = sm.OLS(y, sm.add_constant(X))
            results = model.fit()
            factor_returns.loc[date] = results.params[1:]
        
        return factor_returns

class SignalGeneration:
    def __init__(self, price_data: pd.DataFrame, factor_data: pd.DataFrame, 
                 config: SignalConfig):
        self.price_data = price_data
        self.factor_data = factor_data
        self.config = config
        self.signals = pd.DataFrame()
        
    def generate_signals(self, method: str = 'combined') -> pd.DataFrame:
        """Generate trading signals using specified method"""
        if method == 'combined':
            technical_signals = self._generate_technical_signals()
            factor_signals = self._generate_factor_signals()
            ml_signals = self._generate_ml_signals()
            
            # Combine signals based on configuration
            if self.config.combination_method == 'equal_weight':
                self.signals = (technical_signals + factor_signals + ml_signals) / 3
            elif self.config.combination_method == 'risk_parity':
                self.signals = self._risk_parity_combination([
                    technical_signals, factor_signals, ml_signals
                ])
        
        return self.signals
    
    def _generate_technical_signals(self) -> pd.DataFrame:
        """Generate technical analysis signals"""
        signals = pd.DataFrame(index=self.price_data.index, 
                             columns=self.price_data.columns)
        
        # Moving average crossover
        short_ma = self.price_data.rolling(window=50).mean()
        long_ma = self.price_data.rolling(window=200).mean()
        signals = (short_ma > long_ma).astype(float)
        
        # Add momentum
        momentum = self.price_data.pct_change(20)
        signals = signals * (1 + momentum)
        
        return signals
    
    def _generate_ml_signals(self) -> pd.DataFrame:
        """Generate machine learning based signals"""
        signals = pd.DataFrame(index=self.price_data.index,
                             columns=self.price_data.columns)
        
        for asset in self.price_data.columns:
            # Prepare features
            X = self._prepare_ml_features(asset)
            y = self.price_data[asset].pct_change().shift(-1)
            
            # Train model using expanding window
            model = RandomForestRegressor(n_estimators=100)
            predictions = []
            
            for train_idx, test_idx in TimeSeriesSplit(n_splits=5).split(X):
                X_train, X_test = X.iloc[train_idx], X.iloc[test_idx]
                y_train = y.iloc[train_idx]
                
                model.fit(X_train, y_train)
                pred = model.predict(X_test)
                predictions.extend(pred)
            
            signals[asset] = predictions
        
        return signals

class AlternativeDataProcessor:
    def __init__(self):
        self.data_sources = {}
        self.processed_data = {}
    
    def add_data_source(self, name: str, data: pd.DataFrame, 
                       processing_func: Callable):
        """Add alternative data source with processing function"""
        self.data_sources[name] = {
            'data': data,
            'processing_func': processing_func
        }
    
    def process_all_sources(self) -> Dict[str, pd.DataFrame]:
        """Process all alternative data sources"""
        for name, source in self.data_sources.items():
            self.processed_data[name] = source['processing_func'](source['data'])
        return self.processed_data

class BacktestEngine:
    def __init__(self, config: BacktestConfig, trading_execution: TradingExecution,
                 risk_analytics: RiskAnalytics):
        self.config = config
        self.trading_execution = trading_execution
        self.risk_analytics = risk_analytics
        self.portfolio = pd.DataFrame()
        self.performance_metrics = {}
        
    def run_backtest(self, signals: pd.DataFrame) -> Dict:
        """Run backtest using generated signals"""
        portfolio_value = self.config.initial_capital
        positions = {}
        trades = []
        
        for date in signals.index:
            if self._should_rebalance(date):
                # Generate target portfolio
                target_positions = self._generate_target_positions(
                    signals.loc[date], portfolio_value
                )
                
                # Generate trades
                trades_list = self._generate_trades(positions, target_positions)
                
                # Execute trades
                for trade in trades_list:
                    execution_details = self.trading_execution.execute_trade(trade)
                    trades.append(execution_details)
                
                # Update positions
                positions = target_positions
            
            # Update portfolio value
            portfolio_value = self._calculate_portfolio_value(positions, date)
            self.portfolio.loc[date, 'value'] = portfolio_value
        
        # Calculate performance metrics
        self.performance_metrics = self._calculate_performance_metrics()
        
        return {
            'portfolio': self.portfolio,
            'trades': trades,
            'metrics': self.performance_metrics
        }
    
    def _calculate_performance_metrics(self) -> Dict:
        """Calculate comprehensive performance metrics"""
        returns = self.portfolio['value'].pct_change()
        
        metrics = {
            'total_return': (self.portfolio['value'].iloc[-1] / 
                           self.config.iitial_capital - 1),
            'sharpe_ratio': returns.mean() / returns.std() * np.sqrt(252),
            'max_drawdown': self._calculate_max_drawdown(),
            'turnover': self._calculate_turnover(),
            'tracking_error': self._calculate_tracking_error()
        }
        
        return metrics
    
    def _calculate_max_drawdown(self) -> float:
        """Calculate maximum drawdown"""
        portfolio_value = self.portfolio['value']
        rolling_max = portfolio_value.expanding().max()
        drawdowns = portfolio_value / rolling_max - 1
        return drawdowns.min()

class ResearchInfrastructure:
    def __init__(self, price_data: pd.DataFrame, factor_data: pd.DataFrame,
                 config: BacktestConfig):
        self.price_data = price_data
        self.factor_data = factor_data
        self.config = config
        
        # Initialize components
        self.market_regime = MarketRegime(price_data)
        self.factor_research = FactorResearch(price_data, factor_data)
        self.signal_generation = SignalGeneration(
            price_data, factor_data,
            SignalConfig(
                lookback_period=252,
                decay_factor=0.94,
                update_frequency='daily',
                combination_method='risk_parity'
            )
        )
        self.alternative_data = AlternativeDataProcessor()
        self.backtest_engine = BacktestEngine(
            config,
            TradingExecution(RiskAnalytics(price_data)),
            RiskAnalytics(price_data)
        )
    
    def run_research_pipeline(self) -> Dict:
        """Run complete research pipeline"""
        # Detect market regimes
        regimes = self.market_regime.detect_regimes()
        
        # Analyze factors
        factor_analysis = self.factor_research.analyze_factor_significance()
        
        # Generate signals
        signals = self.signal_generation.generate_signals()
        
        # Run backtest
        backtest_results = self.backtest_engine.run_backtest(signals)
        
        return {
            'market_regimes': regimes,
            'factor_analysis': factor_analysis,
            'signals': signals,
            'backtest_results': backtest_results
        }

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.