First, what are the Key Differences Between Scripts and Applications
Scripts:
- Linear execution flow
- Single responsibility
- Minimal error handling
- Direct database access
- Hardcoded values
- Limited user interaction
Applications:
- Logging and monitoring
- Modular architecture
- Multiple components working together
- Robust error handling
- Configuration management
- User interfaces (CLI, Web, API)
Essential Concepts for Application Development
a. Project Structure
myapp/
├── src/ # Source code
│ ├── __init__.py
│ ├── config/ # Configuration
│ ├── models/ # Data models
│ ├── services/ # Business logic
│ ├── utils/ # Helper functions
│ └── api/ # API endpoints
├── tests/ # Unit and integration tests
├── docs/ # Documentation
├── requirements.txt # Dependencies
└── README.md # Project documentation
b. Design Patterns to Learn
- MVC/MVVM for UI applications
- Repository Pattern for data access
- Dependency Injection for better testing
- Factory Pattern for object creation
- Observer Pattern for event handling
c. Important Principles
- SOLID principles
- Single Responsibility
- Open/Closed
- Liskov Substitution
- Interface Segregation
- Dependency Inversion
- DRY (Don’t Repeat Yourself)
- KISS (Keep It Simple, Stupid)
- YAGNI (You Aren’t Gonna Need It)
3. Practical Steps to Improve
a. Start with a Well-Structured Project
b. Use Configuration Management
# config.py
import os
from typing import Dict, Any
from dataclasses import dataclass
@dataclass
class DatabaseConfig:
host: str
port: int
name: str
user: str
class Config:
def __init__(self):
self.db = DatabaseConfig(
host=os.getenv("DB_HOST", "localhost"),
port=int(os.getenv("DB_PORT", "5432")),
name=os.getenv("DB_NAME", "mydb"),
user=os.getenv("DB_USER", "user")
)
c. Implement Proper Error Handling
class DataFetchError(Exception):
"""Custom exception for data fetching errors"""
pass
def fetch_data(url: str) -> Dict:
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
return response.json()
except requests.RequestException as e:
logger.error(f"Failed to fetch data from {url}: {str(e)}")
raise DataFetchError(f"Data fetch failed: {str(e)}") from e
d. Use Logging Effectively
import logging
from pathlib import Path
def setup_logging(log_dir: Path = Path("logs")):
log_dir.mkdir(exist_ok=True)
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(log_dir / "app.log"),
logging.StreamHandler()
]
)
return logging.getLogger(__name__)
For example, first to lay out a plan to restructure a script codes to modular package
quantum_index/
├── init.py
├── config/
│ ├── init.py
│ ├── settings.py # Configuration parameters
│ └── constants.py # Constants and enums
├── core/
│ ├── init.py
│ ├── data_loader.py # Data loading functions
│ ├── processor.py # Core processing logic
│ ├── optimizer.py # Weight optimization
│ └── validator.py # Data validation
├── models/
│ ├── init.py
│ ├── company.py # Company data model
│ └── portfolio.py # Portfolio composition model
├── utils/
│ ├── init.py
│ ├── data_utils.py # Data manipulation helpers
│ ├── logging_utils.py # Logging configuration
│ └── file_io.py # File I/O operations
├── api/
│ ├── init.py
│ └── endpoints.py # Future API endpoints
├── tests/
│ ├── init.py
│ ├── test_processor.py
│ └── test_optimizer.py
└── main.py # Entry point
Implementation Plan
- Setup Project Structure
- Create package directory and subdirectories
- Set up
setup.pyand requirements.txt
- Core Components
- Move data loading logic to
data_loader.py - Move processing logic to
processor.py - Move optimization to
optimizer.py
- Move data loading logic to
- Configuration
- Extract hardcoded values to
settings.pyandconstants.py - Set up logging configuration
- Extract hardcoded values to
- Data Models
- Create proper data models in
models/ - Add validation logic
- Create proper data models in
- Utils
- Move utility functions to appropriate modules
- Add type hints and docstrings
- Main Application
- Create entry point script
- Add command-line interface
- Testing
- Add unit tests
- Add integration tests
- Documentation
- Add docstrings
- Create README.md