Transition from writing scripts to building complex applications

First, what are the Key Differences Between Scripts and Applications

Scripts:

  • Linear execution flow
  • Single responsibility
  • Minimal error handling
  • Direct database access
  • Hardcoded values
  • Limited user interaction

Applications

  • Logging and monitoring
  • Modular architecture
  • Multiple components working together
  • Robust error handling
  • Configuration management
  • User interfaces (CLI, Web, API)

Essential Concepts for Application Development

a. Project Structure

myapp/
├── src/ # Source code
│ ├── __init__.py
│ ├── config/ # Configuration
│ ├── models/ # Data models
│ ├── services/ # Business logic
│ ├── utils/ # Helper functions
│ └── api/ # API endpoints
├── tests/ # Unit and integration tests
├── docs/ # Documentation
├── requirements.txt # Dependencies
└── README.md # Project documentation

b. Design Patterns to Learn

  1. MVC/MVVM for UI applications
  2. Repository Pattern for data access
  3. Dependency Injection for better testing
  4. Factory Pattern for object creation
  5. Observer Pattern for event handling

c. Important Principles

  1. SOLID principles
    • Single Responsibility
    • Open/Closed
    • Liskov Substitution
    • Interface Segregation
    • Dependency Inversion
  2. DRY (Don’t Repeat Yourself)
  3. KISS (Keep It Simple, Stupid)
  4. YAGNI (You Aren’t Gonna Need It)

3. Practical Steps to Improve

a. Start with a Well-Structured Project

b. Use Configuration Management

# config.py
import os
from typing import Dict, Any
from dataclasses import dataclass

@dataclass
class DatabaseConfig:
    host: str
    port: int
    name: str
    user: str

class Config:
    def __init__(self):
        self.db = DatabaseConfig(
            host=os.getenv("DB_HOST", "localhost"),
            port=int(os.getenv("DB_PORT", "5432")),
            name=os.getenv("DB_NAME", "mydb"),
            user=os.getenv("DB_USER", "user")
        )

c. Implement Proper Error Handling

class DataFetchError(Exception):
    """Custom exception for data fetching errors"""
    pass

def fetch_data(url: str) -> Dict:
    try:
        response = requests.get(url, timeout=10)
        response.raise_for_status()
        return response.json()
    except requests.RequestException as e:
        logger.error(f"Failed to fetch data from {url}: {str(e)}")
        raise DataFetchError(f"Data fetch failed: {str(e)}") from e

d. Use Logging Effectively

import logging
from pathlib import Path

def setup_logging(log_dir: Path = Path("logs")):
    log_dir.mkdir(exist_ok=True)
    
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
        handlers=[
            logging.FileHandler(log_dir / "app.log"),
            logging.StreamHandler()
        ]
    )
    return logging.getLogger(__name__)

For example, first to lay out a plan to restructure a script codes to modular package

quantum_index/
├── init.py
├── config/
│ ├── init.py
│ ├── settings.py # Configuration parameters
│ └── constants.py # Constants and enums
├── core/
│ ├── init.py
│ ├── data_loader.py # Data loading functions
│ ├── processor.py # Core processing logic
│ ├── optimizer.py # Weight optimization
│ └── validator.py # Data validation
├── models/
│ ├── init.py
│ ├── company.py # Company data model
│ └── portfolio.py # Portfolio composition model
├── utils/
│ ├── init.py
│ ├── data_utils.py # Data manipulation helpers
│ ├── logging_utils.py # Logging configuration
│ └── file_io.py # File I/O operations
├── api/
│ ├── init.py
│ └── endpoints.py # Future API endpoints
├── tests/
│ ├── init.py
│ ├── test_processor.py
│ └── test_optimizer.py
└── main.py # Entry point

Implementation Plan

  1. Setup Project Structure
    • Create package directory and subdirectories
    • Set up setup.py and requirements.txt
  2. Core Components
    • Move data loading logic to data_loader.py
    • Move processing logic to processor.py
    • Move optimization to optimizer.py
  3. Configuration
    • Extract hardcoded values to settings.py and constants.py
    • Set up logging configuration
  4. Data Models
    • Create proper data models in models/
    • Add validation logic
  5. Utils
    • Move utility functions to appropriate modules
    • Add type hints and docstrings
  6. Main Application
    • Create entry point script
    • Add command-line interface
  7. Testing
    • Add unit tests
    • Add integration tests
  8. Documentation
    • Add docstrings
    • Create README.md

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.