My current mcp server equipped agent can do
# Current: Natural Language → Tool Selection → Results Display
User: “analyze my portfolio against S&P 500”
Agent: [Calls pa_analyze_portfolio] → “Analysis complete! Results saved to Excel.”
After transformation, it will
# Enhanced: Natural Language → Tool Execution → Code Generation → Advanced Analysis
User: "analyze my portfolio against S&P 500 and create custom visualizations"
Agent:
1. [Calls pa_analyze_portfolio]
2. [Analyzes results structure]
3. [Generates custom Python code]
4. [Executes analysis code]
5. [Creates visualizations]
6. [Provides insights]
Adding below codes to enhance its analysis capabilities, note LLM shall be replaced by Claude Sonnet, so far it’s the best: Dynamic Code Generation Based on MCP Results
class AdvancedIntelligentClient:
"""Enhanced MCP client with code generation capabilities"""
def __init__(self):
# Use Claude Sonnet 4 instead of GPT-4
self.code_generator = ClaudeSonnet4Client()
self.code_executor = PythonCodeExecutor()
self.mcp_client = MCPClient()
async def process_advanced_request(self, user_input: str):
"""Handle complex requests with code generation"""
# Step 1: Execute MCP tools as usual
mcp_results = await self.execute_mcp_tools(user_input)
# Step 2: Generate analysis code based on results
analysis_code = await self.generate_analysis_code(
user_request=user_input,
mcp_data=mcp_results,
data_structure=self.analyze_data_structure(mcp_results)
)
# Step 3: Execute generated code
analysis_results = await self.code_executor.run(analysis_code)
return {
"mcp_results": mcp_results,
"generated_code": analysis_code,
"analysis_results": analysis_results
}
Prompt must be enhanced, for example
ENHANCED_SYSTEM_PROMPT = “””
You are an advanced financial data analysis agent with the following capabilities:
- MCP Tool Integration: Execute FactSet tools (SPAR, PA, NSS, Universe, Relationships)
- Code Generation: Generate Python code for custom analysis based on tool results
- Data Analysis: Perform statistical analysis, visualizations, and insights
- Report Generation: Create comprehensive reports with code, charts, and explanations
WORKFLOW FOR COMPLEX REQUESTS:
- Parse user intent and execute appropriate MCP tools
- Analyze the structure and content of returned data
- Generate Python code for custom analysis based on user requirements
- Execute the code and provide results with explanations
CODE GENERATION CAPABILITIES:
- Pandas data manipulation and analysis
- Statistical analysis (correlations, regressions, risk metrics)
- Visualization (matplotlib, seaborn, plotly)
- Financial calculations (Sharpe ratio, alpha, beta, VaR)
- Portfolio optimization and backtesting
- Custom metrics and KPIs
- Report generation with charts and tables
DATA SOURCES AVAILABLE:
- SPAR: Risk analysis, return statistics, multi-period data
- PA: Portfolio analysis, performance attribution, benchmarking
- NSS: News sentiment scores, entity relationships
- Universe: Market data, primary listings, sector classifications
- Relationships: Competitors, suppliers, customers, partnerships
EXAMPLE COMPLEX REQUESTS:
User: “Analyze my portfolio’s risk-adjusted returns and create a custom dashboard”
Response:
- Execute PA analysis to get portfolio returns
- Execute SPAR analysis to get risk metrics
- Generate Python code to:
- Calculate Sharpe ratio, Sortino ratio, max drawdown
- Create interactive dashboard with plotly
- Compare against benchmark with statistical significance tests
- Generate risk attribution charts
- Execute code and display results
User: “Find correlations between news sentiment and stock performance for my holdings”
Response:
- Get portfolio holdings from PA tool
- Get NSS sentiment data for each holding
- Get market data for price performance
- Generate Python code to:
- Calculate sentiment-return correlations
- Create scatter plots and heatmaps
- Perform statistical significance tests
- Identify sentiment-driven opportunities
- Execute analysis and provide insights
GENERATED CODE REQUIREMENTS:
- Well-commented and production-ready
- Error handling for missing data
- Proper data validation and cleaning
- Professional visualizations with labels
- Statistical significance testing where appropriate
- Clear variable names and modular functions
- Export capabilities (Excel, PNG, HTML)
RESPONSE FORMAT:
{
“mcp_tools_executed”: [“tool1”, “tool2”],
“data_summary”: “Description of data retrieved”,
“generated_code”: “Complete Python code”,
“code_explanation”: “What the code does and why”,
“results”: “Analysis results and insights”,
“visualizations”: [“chart1.png”, “chart2.png”],
“recommendations”: “Actionable insights based on analysis”
}
“””
Integration Architecture:
class EnhancedMCPAgent:
"""Advanced MCP agent with Claude Sonnet 4 and code generation"""
def __init__(self):
self.llm = ClaudeSonnet4Client()
self.mcp_client = MCPClient()
self.code_executor = SecurePythonExecutor()
self.visualization_engine = VisualizationEngine()
self.report_generator = ReportGenerator()
async def handle_complex_request(self, user_input: str):
"""Handle multi-step analysis requests"""
# Parse intent and complexity
intent = await self.llm.analyze_intent(user_input)
if intent.complexity_level == "advanced":
return await self.execute_advanced_workflow(user_input, intent)
else:
return await self.execute_standard_workflow(user_input, intent)
async def execute_advanced_workflow(self, user_input: str, intent):
"""Execute complex multi-step analysis"""
workflow = {
"steps": [],
"results": {},
"generated_code": {},
"visualizations": [],
"insights": []
}
# Step 1: Execute MCP tools
mcp_results = await self.execute_mcp_tools(intent.required_tools)
workflow["results"]["mcp_data"] = mcp_results
# Step 2: Generate analysis code
analysis_code = await self.llm.generate_analysis_code(
user_request=user_input,
data_available=mcp_results,
analysis_type=intent.analysis_type
)
workflow["generated_code"]["analysis"] = analysis_code
# Step 3: Execute generated code
analysis_results = await self.code_executor.run_secure(analysis_code)
workflow["results"]["analysis"] = analysis_results
# Step 4: Generate visualizations
if intent.requires_visualizations:
viz_code = await self.llm.generate_visualization_code(
data=analysis_results,
chart_types=intent.preferred_charts
)
visualizations = await self.visualization_engine.create(viz_code)
workflow["visualizations"] = visualizations
# Step 5: Generate insights and recommendations
insights = await self.llm.generate_insights(
original_request=user_input,
analysis_results=analysis_results,
visualizations=workflow["visualizations"]
)
workflow["insights"] = insights
# Step 6: Create comprehensive report
report = await self.report_generator.create_report(workflow)
return {
"status": "success",
"workflow": workflow,
"report": report,
"executive_summary": insights.executive_summary
}