Try Manim to Create Math Video

There are emerging tools such as Remotion, which allow users to create videos based on their instructions. However, when it comes to professional-grade mathematics and physics, Remotion lacks the rigor and accuracy that Manim offers, a library originally developed by 3Blue1Brown. I conducted a test using Manim to produce a video that illustrates the Mills-Yang theory at a very high, generic level.

"""
Yang-Mills Equations - YouTube Video
A single continuous animation combining all scenes with smooth transitions.
Optimized for YouTube upload (1080p60).
Render command:
manim -qh yang_mills_youtube.py YangMillsYouTube
"""
from manim import *
class YangMillsYouTube(Scene):
"""Complete Yang-Mills explanation video for YouTube."""
def construct(self):
# ==================== INTRO ====================
self.intro_section()
# ==================== EQUATIONS ====================
self.equations_section()
# ==================== EXPLANATION ====================
self.explanation_section()
# ==================== VISUALIZATION ====================
self.visualization_section()
# ==================== OUTRO ====================
self.outro_section()
def intro_section(self):
"""Opening title and hook."""
# Fade in title
title = Text("Yang-Mills Equations", font_size=72, color=YELLOW)
self.play(Write(title), run_time=2)
self.wait(1)
# Subtitle
subtitle = Text(
"The Mathematics Behind the Universe",
font_size=36,
color=WHITE
)
subtitle.next_to(title, DOWN, buff=0.5)
self.play(FadeIn(subtitle, shift=UP))
self.wait(1)
# Hook text
hook = Text(
"One of the 7 Millennium Prize Problems",
font_size=28,
color=GOLD
)
hook.next_to(subtitle, DOWN, buff=0.8)
self.play(Write(hook))
self.wait(1)
prize = Text("$1,000,000 unsolved!", font_size=24, color=GREEN)
prize.next_to(hook, DOWN, buff=0.3)
self.play(FadeIn(prize))
self.wait(2)
# Transition out
self.play(
FadeOut(title),
FadeOut(subtitle),
FadeOut(hook),
FadeOut(prize),
run_time=1
)
self.wait(0.5)
def equations_section(self):
"""Show the main equations."""
# Section title
section_title = Text("The Equations", font_size=48, color=BLUE)
section_title.to_edge(UP)
self.play(Write(section_title))
self.wait(0.5)
# Field Strength Tensor
eq1_label = Text("Field Strength Tensor", font_size=28, color=BLUE)
eq1_label.next_to(section_title, DOWN, buff=0.8)
eq1 = Text(
"F\u03BC\u03BD = \u2202\u03BCA\u03BD - \u2202\u03BDA\u03BC + ig[A\u03BC, A\u03BD]",
font_size=36
)
eq1.next_to(eq1_label, DOWN, buff=0.3)
self.play(Write(eq1_label))
self.play(Write(eq1), run_time=2)
self.wait(1.5)
# Yang-Mills Field Equation
eq2_label = Text("Yang-Mills Field Equation", font_size=28, color=GREEN)
eq2_label.next_to(eq1, DOWN, buff=0.6)
eq2 = Text(
"D\u03BC F\u03BC\u03BD = J\u03BD",
font_size=40
)
eq2.next_to(eq2_label, DOWN, buff=0.3)
self.play(Write(eq2_label))
self.play(Write(eq2), run_time=1.5)
self.wait(1.5)
# Expanded form
eq3_label = Text("Expanded Form", font_size=28, color=RED)
eq3_label.next_to(eq2, DOWN, buff=0.6)
eq3 = Text(
"\u2202\u03BC F\u03BC\u03BD + ig[A\u03BC, F\u03BC\u03BD] = J\u03BD",
font_size=36
)
eq3.next_to(eq3_label, DOWN, buff=0.3)
self.play(Write(eq3_label))
self.play(Write(eq3), run_time=2)
self.wait(2)
# Highlight the key term
highlight_box = SurroundingRectangle(eq3, color=YELLOW, buff=0.2)
note = Text(
"This term makes it non-Abelian!",
font_size=24,
color=YELLOW
)
note.next_to(highlight_box, DOWN, buff=0.3)
self.play(Create(highlight_box), Write(note))
self.wait(2)
# Transition out
self.play(
FadeOut(section_title),
FadeOut(eq1_label), FadeOut(eq1),
FadeOut(eq2_label), FadeOut(eq2),
FadeOut(eq3_label), FadeOut(eq3),
FadeOut(highlight_box), FadeOut(note),
run_time=1
)
self.wait(0.5)
def explanation_section(self):
"""Step-by-step explanation."""
# Section title
section_title = Text("Understanding the Physics", font_size=48, color=GREEN)
section_title.to_edge(UP)
self.play(Write(section_title))
self.wait(0.5)
steps = [
("1. Gauge Field", "A\u03BC represents the force carrier", BLUE),
("2. Field Strength", "F\u03BC\u03BD measures field curvature", GREEN),
("3. Non-Abelian", "Fields interact with themselves!", RED),
("4. Applications", "Strong & weak nuclear forces", PURPLE),
]
step_groups = []
prev_group = section_title
for i, (title, desc, color) in enumerate(steps):
step_title = Text(title, font_size=32, color=color)
step_desc = Text(desc, font_size=24, color=WHITE)
step_group = VGroup(step_title, step_desc).arrange(DOWN, aligned_edge=LEFT, buff=0.15)
step_group.next_to(prev_group, DOWN, buff=0.5, aligned_edge=LEFT)
step_group.shift(RIGHT * 0.5)
self.play(Write(step_title))
self.play(FadeIn(step_desc))
self.wait(1)
step_groups.append(step_group)
prev_group = step_group
self.wait(2)
# Transition out
all_steps = VGroup(*step_groups)
self.play(FadeOut(section_title), FadeOut(all_steps), run_time=1)
self.wait(0.5)
def visualization_section(self):
"""Visual representation of gauge fields."""
# Section title
section_title = Text("Visualizing Gauge Fields", font_size=48, color=PURPLE)
section_title.to_edge(UP)
self.play(Write(section_title))
self.wait(0.5)
# Create grid of arrows
arrows = VGroup()
for i in range(-4, 5):
for j in range(-2, 3):
arrow = Arrow(
start=ORIGIN,
end=0.35 * RIGHT,
color=BLUE,
buff=0,
stroke_width=2
)
arrow.move_to([i * 0.7, j * 0.7 - 0.5, 0])
arrow.rotate(0.25 * (i + j))
arrows.add(arrow)
self.play(Create(arrows), run_time=2)
self.wait(1)
# Label
label1 = Text("Electromagnetic field (Abelian)", font_size=24, color=BLUE)
label1.to_edge(DOWN, buff=1)
self.play(Write(label1))
self.wait(1)
# Transform to show non-Abelian
self.play(
arrows.animate.set_color(RED),
FadeOut(label1),
run_time=1
)
label2 = Text("Yang-Mills field (non-Abelian)", font_size=24, color=RED)
label2.to_edge(DOWN, buff=1)
self.play(Write(label2))
# Animate self-interaction
for _ in range(2):
self.play(
Rotate(arrows, angle=PI/8, about_point=ORIGIN),
run_time=1.5
)
self.play(
Rotate(arrows, angle=-PI/8, about_point=ORIGIN),
run_time=1.5
)
interaction_note = Text(
"Fields interact with themselves!",
font_size=28,
color=YELLOW
)
interaction_note.next_to(label2, UP, buff=0.3)
self.play(Write(interaction_note))
self.wait(2)
# Transition out
self.play(
FadeOut(section_title),
FadeOut(arrows),
FadeOut(label2),
FadeOut(interaction_note),
run_time=1
)
self.wait(0.5)
def outro_section(self):
"""Closing summary and call to action."""
# Summary
summary_title = Text("Summary", font_size=56, color=YELLOW)
self.play(Write(summary_title))
self.wait(1)
self.play(summary_title.animate.to_edge(UP))
points = VGroup(
Text("Yang-Mills equations describe fundamental forces", font_size=28),
Text("Non-Abelian structure = self-interacting fields", font_size=28),
Text("Foundation of the Standard Model", font_size=28),
Text("Mass gap problem remains unsolved", font_size=28, color=GOLD),
).arrange(DOWN, buff=0.4, aligned_edge=LEFT)
points.next_to(summary_title, DOWN, buff=0.8)
for point in points:
self.play(Write(point))
self.wait(0.8)
self.wait(2)
# Fade to final card
self.play(FadeOut(summary_title), FadeOut(points))
# End card
thanks = Text("Thanks for watching!", font_size=48, color=WHITE)
subscribe = Text("Like & Subscribe for more physics!", font_size=28, color=BLUE)
subscribe.next_to(thanks, DOWN, buff=0.5)
end_group = VGroup(thanks, subscribe)
self.play(Write(thanks))
self.play(FadeIn(subscribe))
self.wait(3)
# Final fade out
self.play(FadeOut(end_group))
self.wait(1)
if __name__ == "__main__":
print("=" * 50)
print("Yang-Mills YouTube Video")
print("=" * 50)
print()
print("Render command:")
print(" manim -qh yang_mills_youtube.py YangMillsYouTube")
print()
print("For 4K:")
print(" manim -qk yang_mills_youtube.py YangMillsYouTube")

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.